Skip to content
Snippets Groups Projects
Commit ce574f93 authored by Rob Moss's avatar Rob Moss
Browse files

We now use "s" for spleen compartments and flows

parent 72fea8d5
Branches
No related tags found
No related merge requests found
Pipeline #138449 passed
vignettes/articles/diagram.png

25.1 KiB | W: | H:

vignettes/articles/diagram.png

25 KiB | W: | H:

vignettes/articles/diagram.png
vignettes/articles/diagram.png
vignettes/articles/diagram.png
vignettes/articles/diagram.png
  • 2-up
  • Swipe
  • Onion skin
......@@ -46,8 +46,8 @@
\node[comp,right=1cm of bone] (ucirc) {\(U_c\)\,: uRBCs in circulation};
\node[comp,right=1cm of ucirc] (icirc) {\(I_c\)\,: iRBCs in circulation};
\node[comp,right=1cm of icirc] (iseq) {\(I_q\)\,: Sequestered iRBCs};
\node[comp,below=1cm of ucirc] (uspl) {\(U_r\)\,: uRBCs in spleen};
\node[comp,below=1cm of icirc] (ispl) {\(I_r\)\,: iRBCs in spleen};
\node[comp,below=1cm of ucirc] (uspl) {\(U_s\)\,: uRBCs in spleen};
\node[comp,below=1cm of icirc] (ispl) {\(I_s\)\,: iRBCs in spleen};
\node[below=1cm of uspl] (uexit) {};
\node[below=1cm of ispl] (iexit) {};
......@@ -61,7 +61,7 @@
\draw[flow] (uspl.105) -- (ucirc.255) node[midway,left] {\(\delta'_u\)};
\draw[flow] (icirc.285) -- (ispl.75) node[midway,right] {\(\delta_i\)};
\draw[flow] (ispl.105) -- (icirc.255) node[midway,left] {\(\delta'_i\)};
\draw[flow] (uspl) -- (ispl) node[midway,above] {\(\alpha_r\)};
\draw[flow] (uspl) -- (ispl) node[midway,above] {\(\alpha_s\)};
\draw[flow] (uspl) -- (uexit) node[midway,right] {\(\lambda_u\)};
\draw[flow] (ispl) -- (iexit) node[midway,right] {\(\lambda_i\)};
\end{tikzpicture}
......
......@@ -40,29 +40,29 @@ pkgdown:
\newcommand{\nc}[1][]{n(a#1, t#1)}
\newcommand{\rc}[1][]{r(a#1, t#1)}
\newcommand{\Rc}[1][]{R_c(a#1, t#1)}
\newcommand{\Rr}[1][]{R_r(a#1, t#1)}
\newcommand{\Rr}[1][]{R_s(a#1, t#1)}
\newcommand{\Nc}[1][]{N_c(a#1, t#1)}
\newcommand{\Nr}[1][]{N_r(a#1, t#1)}
\newcommand{\Nr}[1][]{N_s(a#1, t#1)}
\newcommand{\Uc}[1][]{U_c(a#1, t#1)}
\newcommand{\Ur}[1][]{U_r(a#1, t#1)}
\newcommand{\Ur}[1][]{U_s(a#1, t#1)}
\newcommand{\Ic}[1][]{I_c(a#1, t#1)}
\newcommand{\Ir}[1][]{I_r(a#1, t#1)}
\newcommand{\Ir}[1][]{I_s(a#1, t#1)}
\newcommand{\Iq}[1][]{I_q(a#1, t#1)}
\newcommand{\Icat}[2]{I_c(#1, #2)}
\newcommand{\Irat}[2]{I_r(#1, #2)}
\newcommand{\Irat}[2]{I_s(#1, #2)}
\newcommand{\Iqat}[2]{I_q(a1, #2)}
\newcommand{\Mac}[1][]{M(t#1)}
\newcommand{\Macu}[1][]{M_u(t#1)}
\newcommand{\Maci}[1][]{M_i(t#1)}
\newcommand{\Ucnet}[1][]{\mathbf{U_c}(t#1)}
\newcommand{\Urnet}[1][]{\mathbf{U_r}(t#1)}
\newcommand{\Urnet}[1][]{\mathbf{U_s}(t#1)}
\newcommand{\Icnet}[1][]{\mathbf{I_c}(t#1)}
\newcommand{\Irnet}[1][]{\mathbf{I_r}(t#1)}
\newcommand{\Irnet}[1][]{\mathbf{I_s}(t#1)}
\newcommand{\Uss}{U_{ss}}
\newcommand{\rss}{r_{ss}}
\newcommand{\Rss}{R_{ss}}
\newcommand{\Nss}{N_{ss}}
\newcommand{\Urss}{U_{r,ss}}
\newcommand{\Urss}{U_{s,ss}}
\newcommand{\Turbc}{T_{\mathrm{urbc}}}
\newcommand{\Tirbc}{T_{\mathrm{irbc}}}
......@@ -233,7 +233,7 @@ These steady-state parameters define the initial (uninfected) cell populations:
\\
N_c(a, t=0) &= \Nss(a)
\\
U_r(a, t=0) &= \Urss(a)
U_s(a, t=0) &= \Urss(a)
\\
M(t=0) &= M_0
\end{align}
......@@ -245,7 +245,7 @@ We start with a small number \(I_0\) of infected RBCs in the circulation, with a
\\
I_q(a, t=0) &= I_c(a, t=0) \cdot (1 - \exp[-\zeta])
\\
I_r(a, t=0) &= I_c(a, t=0) \cdot (1 - \exp[-\delta_i]) \cdot \exp(- \lambda_i)
I_s(a, t=0) &= I_c(a, t=0) \cdot (1 - \exp[-\delta_i]) \cdot \exp(- \lambda_i)
\end{align}
The initial cell populations for the baseline parameter values are shown in Figures \@ref(fig:nr0), \@ref(fig:U0), and \@ref(fig:I0).
......@@ -475,10 +475,10 @@ The removal rate \(\delta_u\) of uninfected RBCs from the circulation into the s
| \(g_d^U\) | Slope parameter | \(`r p$gdUloss`\) |
| \(\delta_{50}^U\) | Scaling parameter | \(`r p$UIdelta50uRBC`\) |
We denote the number of uRBCs removed in a time-step as \(U_{c \to r}\):
We denote the number of uRBCs removed in a time-step as \(U_{c \to s}\):
\begin{align}
U_{c \to r}(a, t) &= \Uc[-1] \cdot (1 - \exp[-\delta_u(a, t)])
U_{c \to s}(a, t) &= \Uc[-1] \cdot (1 - \exp[-\delta_u(a, t)])
\end{align}
```{r deltauinner, class.source = 'fold-hide', echo = ! knitr::is_latex_output(), fig.cap = 'The uRBC removal rate \\(\\delta_u(a, t)\\) from the circulation into the spleen when the scaling factor \\(F_U = 1\\).'}
......@@ -524,10 +524,10 @@ Uninfected RBCs in the spleen return to the circulation at rate \(\delta'_u\), w
| \(\mathrm{\mu_U}\) | Scaling parameter | \(`r p$mu_deltaUr`\) |
| \(\mathrm{\sigma_U}\) | Scaling parameter | \(`r p$sigma_deltaUr`\) |
We denote the number of uRBCs released in a time-step as \(U_{r \to c}\):
We denote the number of uRBCs released in a time-step as \(U_{s \to c}\):
\begin{align}
U_{r \to c}(a, t) &= \Ur[-1] \cdot \exp[- \lambda_u(a, t)]
U_{s \to c}(a, t) &= \Ur[-1] \cdot \exp[- \lambda_u(a, t)]
\cdot (1 - \exp[-\delta'_u(a)])
\end{align}
......@@ -545,16 +545,16 @@ ggplot(df_duprime, aes(age / 24, value)) +
\clearpage
# RBC infection
Uninfected RBCs are infected at rates \(\alpha_c\) and \(\alpha_r\) in the circulation and spleen, respectively, which depend on the age-specific merozoite preference \(\beta\):
Uninfected RBCs are infected at rates \(\alpha_c\) and \(\alpha_s\) in the circulation and spleen, respectively, which depend on the age-specific merozoite preference \(\beta\):
\begin{align}
\alpha_c(a, t) &= \mathrm{PMF} \cdot
\frac{\beta(a) \cdot U_c(a, t - 1)}{
\sum_{a'} \left[\beta(a') \cdot U_c(a', t - 1)\right]}
\\
\alpha_r(a, t) &= \mathrm{PMF} \cdot
\frac{\beta(a) \cdot U_r(a, t - 1)}{
\sum_{a'} \left[\beta(a') \cdot U_r(a', t - 1)\right]}
\alpha_s(a, t) &= \mathrm{PMF} \cdot
\frac{\beta(a) \cdot U_s(a, t - 1)}{
\sum_{a'} \left[\beta(a') \cdot U_s(a', t - 1)\right]}
\end{align}
Merozoites are released when infected RBCs rupture at age \(\Tirbc\).
......@@ -565,9 +565,9 @@ Here we use the notation \(\nabla_{x \to y}\) to define the number of uRBCs infe
I_c^\nabla + I_q(\Tirbc, t-1)
]
\\
\nabla_{r \to c}(a, t) &= \alpha_c(a, t) \cdot \omega \cdot I_r^\nabla
\nabla_{s \to c}(a, t) &= \alpha_c(a, t) \cdot \omega \cdot I_s^\nabla
\\
\nabla_{r \to r}(a, t) &= \alpha_r(a, t) \cdot (1 - \omega) \cdot I_r^\nabla
\nabla_{s \to s}(a, t) &= \alpha_s(a, t) \cdot (1 - \omega) \cdot I_s^\nabla
\end{align}
These in turn are defined in terms of the iRBCs that remain in the circulation and spleen, respectively:
......@@ -575,15 +575,15 @@ These in turn are defined in terms of the iRBCs that remain in the circulation a
\begin{align}
I_c^\nabla &= I_c(\Tirbc, t-1) \cdot \exp[-\delta_i] \cdot \exp[-\zeta]
\\
I_r^\nabla &= I_r(\Tirbc, t-1) \cdot \exp[-\delta'_i] \cdot \exp[-\lambda_i]
I_s^\nabla &= I_s(\Tirbc, t-1) \cdot \exp[-\delta'_i] \cdot \exp[-\lambda_i]
\end{align}
We can then define the total number of infected RBCs in the circulation and in the spleen:
\begin{align}
\nabla_c(t) &= \sum_a \nabla_{c \to c}(a, t) + \sum_a \nabla_{r \to c}(a, t)
\nabla_c(t) &= \sum_a \nabla_{c \to c}(a, t) + \sum_a \nabla_{s \to c}(a, t)
\\
\nabla_r(t) &= \sum_a \nabla_{r \to r}(a, t)
\nabla_s(t) &= \sum_a \nabla_{s \to s}(a, t)
\end{align}
| Symbol | Description | Baseline value |
......@@ -643,10 +643,10 @@ The removal rate \(\delta_i\) of infected RBCs from the circulation into the spl
@Safeuk08 conducted in vitro experiments that showed 11% and 20% of Pf rings and schizonts, respectively, are retained in the spleen in every passage of the iRBCs through the spleen.
Accordingly, we assume here that \(\delta_{iS} \approx 2 \cdot \delta_{iR}\).
We denote the number of iRBCs removed in a time-step as \(I_{c \to r}\):
We denote the number of iRBCs removed in a time-step as \(I_{c \to s}\):
\begin{align}
I_{c \to r}(a, t) &= \Ic[-1] \cdot (1 - \exp[-\delta_i(a, t)])
I_{c \to s}(a, t) &= \Ic[-1] \cdot (1 - \exp[-\delta_i(a, t)])
\end{align}
```{r deltaiinner, class.source = 'fold-hide', echo = ! knitr::is_latex_output(), fig.cap = 'The iRBC removal rate \\(\\delta_i(a, t)\\) from the circulation into the spleen when the scaling factor \\(F_I = 1\\).'}
......@@ -705,10 +705,10 @@ We assume that ring-stage RBCs are more likely to return to the circulation than
| \(\delta_I^{sl}\) | Slope parameter | \(`r p$deltaIa_slope`\) |
| \(\delta_I^{c50}\) | Half-maximal age | \(`r p$deltaIa_c50`\) |
We denote the number of iRBCs released in a time-step as \(I_{r \to c}\):
We denote the number of iRBCs released in a time-step as \(I_{s \to c}\):
\begin{align}
I_{r \to c}(a, t) &= \Ir[-1] \cdot \exp[- \lambda_i(a, t)]
I_{s \to c}(a, t) &= \Ir[-1] \cdot \exp[- \lambda_i(a, t)]
\cdot (1 - \exp[-\delta'_i(a)])
\end{align}
......@@ -815,7 +815,7 @@ The macrophage population is defined with respect to the steady-state ratio of m
| \(\lambda_u^{\mathrm{sel}}\) | Rate parameter for uRBCs | \(`r p$lambdaU.sel`\) |
| \(\lambda_i^{\mathrm{sel}}\) | Rate parameter for iRBCs | \(`r p$lambdaI.sel`\) |
| \(k_M\) | Scaling factor | \(`r p$kM`\) |
| \(b_M\) | Steady-state ratio of \(M\) to \(U_r\) | \(`r p$bM`\) |
| \(b_M\) | Steady-state ratio of \(M\) to \(U_s\) | \(`r p$bM`\) |
| \(\gamma_M\) | Scaling factor | \(`r p$gamma_M`\) |
| \(T_M\) | Age at which reticulocytes mature | \(`r p$T_M`\) hours |
......@@ -837,21 +837,21 @@ We can now define the update rules for the RBC populations in the circulation an
\Rc &= \begin{cases}
0
& \text{for } a = 1 \\
R_{c \to c}(a, t) + U_{r \to c}(a, t)
R_{c \to c}(a, t) + U_{s \to c}(a, t)
+ r_{\to c}(a, t)
- \nabla_{c \to c}(a, t)
- \nabla_{r \to c}(a, t)
- \nabla_{s \to c}(a, t)
& \text{for } 1 < a \le T_M
\end{cases}
\\
\Nc &= \begin{cases}
R_{c \to c}(a, t) + U_{r \to c}(a, t)
R_{c \to c}(a, t) + U_{s \to c}(a, t)
- \nabla_{c \to c}(a, t)
- \nabla_{r \to c}(a, t)
- \nabla_{s \to c}(a, t)
& \text{for } a = T_M + 1 \\
N_{c \to c}(a, t) + U_{r \to c}(a, t)
N_{c \to c}(a, t) + U_{s \to c}(a, t)
- \nabla_{c \to c}(a, t)
- \nabla_{r \to c}(a, t)
- \nabla_{s \to c}(a, t)
& \text{for } T_M + 1 < a \le T_U
\end{cases}
\\
......@@ -860,19 +860,19 @@ We can now define the update rules for the RBC populations in the circulation an
N_c(a, t) & \text{for } T_R < a \le T_U
\end{cases}
\\
\Ur &= U_{r \to r}(a, t) + U_{c \to r}(a, t) - \nabla_{r \to r}(a, t)
\Ur &= U_{s \to s}(a, t) + U_{c \to s}(a, t) - \nabla_{s \to s}(a, t)
\\
\Ic &=\begin{cases}
\nabla_c(t)
& \text{for } a = 1 \\
I_{c \to c}(a, t) + I_{r \to c}(a, t)
I_{c \to c}(a, t) + I_{s \to c}(a, t)
& \text{for } 1 < a \le T_I
\end{cases}
\\
\Ir &= \begin{cases}
\nabla_r(t)
\nabla_s(t)
& \text{for } a = 1 \\
I_{r \to r}(a, t) + I_{c \to r}(a, t)
I_{s \to s}(a, t) + I_{c \to s}(a, t)
& \text{for } 1 < a \le T_I
\end{cases}
\end{align}
......@@ -884,11 +884,11 @@ where:
\\
N_{c \to c}(a, t) &= \Nc[-1] \cdot \exp[-\delta_u]
\\
U_{r \to r}(a, t) &= \Ur[-1] \cdot \exp[-\delta'_u - \lambda_u]
U_{s \to s}(a, t) &= \Ur[-1] \cdot \exp[-\delta'_u - \lambda_u]
\\
I_{c \to c}(a, t) &= \Ic[-1] \cdot \exp[-\delta_i - \zeta]
\\
I_{r \to r}(a, t) &= \Ic[-1] \cdot \exp[-\delta'_i - \lambda_i]
I_{s \to s}(a, t) &= \Ic[-1] \cdot \exp[-\delta'_i - \lambda_i]
\end{align}
\clearpage
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment